Geometry: 9.4-9.6 Notes

NAME_

9.4 Use the Tangent Ratio

Define Vocabulary:

trigonometric ratio -

tangent -

angle of elevation -

Examples: Finding Tangent Ratios

WE DO

Find tan *A* and tan *B*. Write each answer as a fraction and as a decimal rounded to four places.

YOU DO

Find tan J and tan K. Write each answer as a fraction and as a decimal rounded to four places.

Date:

Examples: Finding a leg length.

WE DO

Find the value of *x*. Round your answer to the nearest tenth.

YOU DO

Find the value of x. Round your answer to the nearest tenth.

Examples: Using Special Right triangle to find a Tangent.

WE DO

Use a special right triangle to find the tangent of a 30° angle.

YOU DO

Use a special right triangle to find the tangent of 45° .

Examples: Modeling with Mathematics

WE DO

You are measuring the height of a tree. You stand 40 feet from the base of the tree. The angle of elevation to the top of the tree is 65°. Find the height of the tree to the nearest foot.

YOU DO

You are measuring the height of a lamppost. You stand 40 inches from the base of the lamppost. You measure the angle of elevation from the ground to the top of the lamppost to be 70°. Find the height h of the lamppost to the nearest inch.

Define Vocabulary:

sine –

cosine -

angle of depression -

Examples: Finding Sine and Cosine Ratios.

WE DO

Find sin A, sin B, cos A, and cos B. Write each answer as a fraction and as a decimal rounded to four places.

YOU DO

Find sin D, sin F, cos D, and cos F. Write each answer as a fraction and as a decimal rounded to four places.

Sine and Cosine of Complementary Angles

The sine of an acute angle is equal to the cosine of its complement. The cosine of an acute angle is equal to the sine of its complement.

Let A and B be complementary angles. Then the following statements are true.

 $\sin A = \cos(90^\circ - A) = \cos B \qquad \qquad \sin B = \cos(90^\circ - B) = \cos A$ $\cos A = \sin(90^\circ - A) = \sin B \qquad \qquad \cos B = \sin(90^\circ - B) = \sin A$

Examples: Rewriting Trigonometric Expressions.

WE DO

Write cos 68° in terms of sine.

YOU DO

Write $\cos 23^\circ$ in terms of sine.

Examples: Finding Leg Lengths

WE DO

Find the values of *x* and *y* using sine and cosine. Round your answers to the nearest tenth.

YOU DO

Find the values of u and t using sine and cosine. Round your answers to the nearest tenth.

Examples: Finding Sine and Cosine in Special Right Triangles.

С

WE DO

• tan B A

YOU DO

Examples: Modeling with Mathematics

WE DO

You are skiing down a hill with an altitude of 800 feet. The angle of depression is 15°. Find the distance x you ski down the hill to the nearest foot.

YOU DO

A camera attached to a kite is filming the damage caused by a brush fire in a closed-off area. The camera is directly above the center of the closed-off area. A person is standing 100 feet away from the center of the closed-off area. The angle of depression from the camera to the person flying the kite is How long is the string on the kite?

Assignment

Define Vocabulary:

inverse tangent -

inverse sine -

inverse cosine -

solve a right triangle -

Examples: Identifying Angles from Trigonometric Ratios

WE DO

Determine which of the two acute angles has a sine of 0.4.

YOU DO

Determine which of the two acute angles has the given trigonometric ratio.

1. The sine of the angle is $\frac{12}{13}$.

2. The tangent of the angle is $\frac{5}{12}$.

Examples: Finding Angle Measures

WE DO

Let $\angle A$, $\angle B$, and $\angle C$ be acute angles. Use a calculator to approximate the measures of $\angle A$, $\angle B$, and $\angle C$ to the nearest tenth of a degree.

a. tan A = 3.29

b. $\sin B = 0.55$

c. $\cos C = 0.87$

YOU DO

Let $\angle G$, $\angle H$, and $\angle K$ be acute angles. Use a calculator to approximate the measures of $\angle G$, $\angle H$, and $\angle K$ to the nearest tenth of a degree.

a. tan G = 0.43 b. sin H = 0.68 c. cos K = 0.94

Solving a Right Triangle

To solve a right triangle means to find all unknown side lengths and angle measures. You can solve a right triangle when you know either of the following.

- two side lengths
- · one side length and the measure of one acute angle

Examples: Solving a Right Triangle

WE DO

Solve the right triangle. Round decimal answers to the nearest tenth.

YOU DO

Solve the right triangle. Round decimal answers to the nearest tenth.

Examples: Solving a Right Triangle

WE DO

Solve the right triangle. Round decimal answers to the nearest tenth.

YOU DO

Solve the right triangle. Round decimal answers to the nearest tenth.

Examples: Solving a Real-Life Problem

WE DO

Use the information in Example 5. Another raked stage is 25 feet long from front to back with a total rise of 1.5 feet. You want the rake to be 5° or less. Is the raked stage within your desired range? Explain.

Assignment			